
117

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

Shastri 5th Semester

Computer Science

Unit: 3rd

Advanced features of 'C' Language

C language is a powerful, general-purpose programming language that has been

widely used for over four decades. Some of the advanced features of C language

include:

• Pointers: C language supports pointers, which are variables that hold the

memory address of another variable. Pointers allow for powerful and efficient

memory management and are used in many advanced features of C language,

such as dynamic memory allocation and function pointers.

• Dynamic memory allocation: C language supports the allocation of memory

at runtime using functions such as malloc() and calloc(). This feature allows

for the creation of variable-size data structures, such as linked lists and trees.

• Bit manipulation: C language provides bitwise operators that allow for the

manipulation of individual bits in a variable. This feature can be used for

efficient low-level programming and for working with binary data.

• Preprocessor directives: C language has a powerful preprocessor that can be

used to include header files, define macros, and perform conditional

compilation. This feature allows for more flexible and modular code

organization.

• Function pointers: C language supports function pointers, which are pointers

that hold the memory address of a function. Function pointers can be used to

create callback functions and to implement function polymorphism.

• Structs and Unions: C language provides structs, which allow for the

creation of user-defined data types, and unions, which allow for the use of the

same memory location for multiple data types.

• File handling: C language provides a set of functions for performing basic

file operations such as opening, reading, writing, and closing files.

118

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

• Multi-threading: C language provides a set of functions to create and manage

multiple threads of execution in a program, which allows for concurrent

processing and can improve the performance of certain types of applications.

• Standard Template Library (STL): C++ which is an extension of C

language provides STL which is a collection of template classes and functions

that implement common data structures and algorithms.

These features make C language a versatile and powerful language that can be used

to create a wide range of applications, from low-level system software to high-

performance applications.

C language Sorting

Sorting is the process of arranging a collection of elements in a specific order. In C

language, sorting an array of elements can be achieved using different algorithms,

such as:

• Bubble sort: this algorithm repeatedly iterates through the array, comparing

adjacent elements and swapping them if they are in the wrong order.

• selection sort: this algorithm divides the array into two parts, a sorted part

and an unsorted part. In each iteration, the smallest element in the unsorted

part is found and moved to the end of the sorted part.

• insertion sort: this algorithm starts with an empty sorted part and repeatedly

selects an element from the unsorted part and inserts it into the correct position

in the sorted part.

• merge sort: this algorithm divides the array into two equal parts, sorts each

part separately, and then merges the two sorted parts together.

• quick sort: this algorithm selects a pivot element from the array and partition

the other elements into two groups, one group with elements smaller than the

pivot and one group with elements larger than the pivot.

These are some of the most common sorting algorithms used in C language, each

one with its own set of advantages and disadvantages. Some sorting algorithms are

efficient for small arrays, while others are efficient for large arrays. Some sorting

algorithms have a simple implementation, while others are more complex.

119

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

It's worth noting that most of the time, the complexity of a sorting algorithm is

measured in terms of "n", which represents the number of elements in the array. The

most common complexities are O(n^2) and O(nlogn)

Algorithms for Sorting Methods in C Language:

BUBBLE SORT:

Example

void bubbleSort(int arr[], int n) {

 for (int i = 0; i < n-1; i++) {

 for (int j = 0; j < n-i-1; j++) {

 if (arr[j] > arr[j+1]) {

 int temp = arr[j];

 arr[j] = arr[j+1];

 arr[j+1] = temp;

 }

 }

 }

}

In this algorithm, we use nested loops to iterate through the array. In each iteration

of the outer loop, the inner loop compares adjacent elements and swaps them if they

are in the wrong order. This process is repeated until the array is sorted.

SELECTION SORT:

Example

void selectionSort(int arr[], int n) {

 for (int i = 0; i < n-1; i++) {

120

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

 int minIndex = i;

 for (int j = i+1; j < n; j++) {

 if (arr[j] < arr[minIndex]) {

 minIndex = j;

 }

 }

 int temp = arr[minIndex];

 arr[minIndex] = arr[i];

 arr[i] = temp;

 }

}

In this algorithm, we use nested loops to iterate through the array. In each iteration

of the outer loop, the inner loop finds the index of the smallest element in the

unsorted part of the array. Then, it swaps the element at the current index with the

smallest element. This process is repeated until the array is sorted.

INSERTION SORT:

Example

void insertionSort(int arr[], int n) {

 for (int i = 1; i < n; i++) {

 int key = arr[i];

 int j = i - 1;

 while (j >= 0 && arr[j] > key) {

 arr[j+1] = arr[j];

 j--;

 }

121

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

 arr[j+1] = key;

 }

}

In this algorithm, we use a nested loop to iterate through the array. In each iteration

of the outer loop, the inner loop starts at the current index and compares the element

with the previous element. If the element is smaller, it is shifted to the left. This

process is repeated until the element is in its correct position in the sorted part of the

array.

C LANGUAGE: SEARCHING METHODS

Searching is the process of finding an element within a collection of elements. In C

language, searching an array of elements can be achieved using different algorithms,

such as:

Linear search: This algorithm iterates through the array sequentially and compares

each element with the target element. It returns the index of the first occurrence of

the target element or -1 if the element is not found.

Example

int linearSearch(int arr[], int n, int target) {

 for (int i = 0; i < n; i++) {

 if (arr[i] == target) {

 return i;

 }

 }

 return -1;

}

Binary search: This algorithm is used on a sorted array and it repeatedly divides the

search interval in half. It compares the middle element of the search interval with

the target element, if the target is smaller than the middle element, the search

continues in the lower half of the array, if the target is larger than the middle element,

122

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

the search continues in the upper half of the array. This process is repeated until the

target element is found or the search interval is empty.

Example

int binarySearch(int arr[], int n, int target) {

 int left = 0;

 int right = n-1;

 while (left <= right) {

 int mid = (left + right) / 2;

 if (arr[mid] == target) {

 return mid;

 } else if (arr[mid] < target) {

 left = mid + 1;

 } else {

 right = mid - 1;

 }

 }

 return -1;

}

Jump search: This algorithm is used on a sorted array, it works by first jumping

over a certain number of elements, then checking each element in the next block of

elements one by one. The number of elements jumped over each time is called the

jump size. This process is repeated until the target element is found or the search

interval is empty.

Example

int jumpSearch(int arr[], int n, int target) {

 int jumpSize = sqrt(n);

123

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

 int left = 0;

 int right = jumpSize;

 while (right < n && arr[right] < target) {

 left = right;

 right += jumpSize;

 }

 for (int i = left; i <= right && i < n; i++) {

 if (arr[i] == target) {

 return i;

 }

 }

The top-down approach of problem-solving

The top-down approach of problem-solving is a method of breaking down a complex

problem into smaller and simpler sub-problems. The approach starts with

understanding the overall problem and then dividing it into smaller, manageable sub-

problems that can be solved independently.

The steps involved in the top-down approach of problem-solving are:

1. Understand the problem: The first step is to understand the problem statement

and the requirements of the problem.

2. Break the problem down: Once the problem is understood, it is broken down

into smaller sub-problems. The sub-problems should be independent and

should be solvable with the knowledge and resources available.

3. Solve the sub-problems: The next step is to solve the sub-problems one by

one, starting with the simplest ones.

4. Combine the solutions: The solutions of the sub-problems are combined to

form a solution for the overall problem.

5. Test and verify: The final solution is tested and verified to ensure that it meets

the requirements and solves the problem.

124

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

This approach allows the problem to be broken down into smaller, manageable

pieces, making it easier to understand, solve, and implement. It also allows for a

step-by-step development of the solution, making it easier to track progress and

identify errors.

It's worth noting that, this approach is also known as the "divide and conquer"

approach, because it involves breaking down the problem into smaller sub-problems,

solving them independently and then combining the solutions. It's also worth noting

that, the top-down approach is used in many programming languages, such as C,

C++, JAVA, and Python, to design the program structure, algorithms, and functions.

Modular programming and functions

Modular programming is a software design technique that involves breaking a large,

complex program into smaller, independent, and reusable modules or components.

Each module contains a specific set of functions that perform a specific task or set

of tasks.

Functions are a fundamental building block in modular programming. A function is

a self-contained block of code that performs a specific task. Functions in C language

have a specific syntax, which includes the function name, a list of parameters, and a

block of statements that are executed when the function is called.

Functions have several advantages in modular programmings, such as:

• Code reusability: Functions can be reused in multiple parts of the program,

reducing the amount of code that needs to be written and maintained.

• Code organization: Functions make it easier to organize and structure the

code, making it more readable and maintainable.

• Code testing and debugging: Functions can be tested and debugged

independently, making it easier to identify and fix errors in the program.

• Abstraction: Functions hide the implementation details and provide a clear

interface for interacting with the module, this allows for more flexibility in

the design and implementation of the program.

Modular programming and functions work together to make the code more

manageable and maintainable. Functions make it easy to divide the code into

smaller, more manageable pieces, and modular programming makes it easy to

125

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

organize and reuse those pieces. This makes it easier to understand the program,

identify errors, and make changes as needed.

Standard Library of C functions

The standard library of C functions is a collection of pre-written functions that are

included with the C programming language. These functions are provided by the C

standard library and are available to all C programs. The standard library functions

perform a wide variety of tasks, such as input and output, memory allocation, string

manipulation, and math operations.

Some of the most commonly used functions in the C standard library include:

• Input and output functions: scanf() and printf() for reading and writing to the

console, fopen() and fclose() for working with files.

• Memory management functions: malloc() and calloc() for dynamic memory

allocation, free() for deallocating memory.

• String manipulation functions: strlen() for finding the length of a string,

strcpy() for copying a string, strcmp() for comparing two strings.

• Math functions: sqrt() for finding the square root of a number, sin() and cos()

for trigonometric operations, pow() for raising a number to a power.

• Time and date functions: time() and ctime() for working with time and date

values.

• Type conversion functions: atoi() for converting a string to an integer, itoa()

for converting an integer to a string.

These functions are a part of the C standard library and they are defined in the

standard headers such as <stdio.h>, <stdlib.h>, <string.h>, <math.h> and <time.h>

. The C standard library provides a wide range of functions that can be used to

perform a variety of tasks, making it easier to write efficient and effective C

programs.

PROTOTYPE OF A FUNCTION

A function prototype is a declaration of a function that specifies the function's return

type, name, and parameter list. In C language, function prototypes are used to inform

126

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

the compiler about the function's interface, including the number and types of

parameters it expects and the type of value it returns.

The basic syntax of a function prototype in C language is:

Example

return_type function_name(parameter_type parameter_name, parameter_type

parameter_name, ...);

For example, the prototype of a function that takes two integers and returns their

sum would be:

Example

int add(int a, int b);

Function prototypes are typically placed in a header file, which can be included in

multiple source files. This allows the compiler to check the function calls against the

prototypes and ensure that the correct number and types of arguments are passed to

the function.

In C language, a function prototype is not mandatory but it's a good practice to use

a function prototype. It allows the compiler to check the function calls against the

prototypes and ensures that the correct number and types of arguments are passed to

the function, also it allows the compiler to check for type mismatch and other errors

before the program is executed.

Formal parameter list, Return Type, Function call

A formal parameter list is a list of parameters that a function expects to receive when

it is called. It is specified in the function prototype or definition. The formal

parameter list includes the type and name of each parameter, and it is used by the

compiler to check that the function is called with the correct number and types of

arguments.

The return type of a function is the type of value that the function returns when it is

called. It is specified in the function prototype or definition. The return type can be

any valid C data type, such as int, float, char, or void. If the function does not return

a value, the return type is void.

127

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

A function call is the act of invoking a function and passing it the necessary

arguments. In C language, a function is called by specifying the function name

followed by a set of parentheses enclosing the arguments. The number and types of

arguments must match the formal parameter list of the function.

For example, given the following function prototype:

Example

int add(int a, int b);

A call to this function would look like this:

Example

int result = add(3, 5);

In this example, the function is called with the arguments 3 and 5, which match the

formal parameter list of the function (two integers). The function returns an integer,

which is stored in the variable 'result'.

Function Block Structure

The function block structure is the structure of a function in C language, which

consists of several elements:

1. Function header: This includes the return type, function name, and formal

parameter list. The return type is the data type of the value that the function

returns. The function name is a unique identifier that is used to call the

function. The formal parameter list specifies the types and names of the

arguments that the function expects to receive when it is called.

2. Local variable declarations: These are variables that are declared within the

function and can only be accessed within the function. They are used to store

temporary values and intermediate results.

3. Function body: This is the main block of statements that are executed when

the function is called. It contains the code that performs the specific task of

the function.

4. Return statement: This is an optional statement that is used to return a value

from the function. If the return type of the function is void, the return

statement is not used.

128

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

Here is an example of a function block structure in C:

Example

int add(int a, int b)

 {

int result;

 result = a + b;

 return result;

 }

This function takes two integers as input and returns their sum. The function header

specifies the return type (int), function name (add), and a formal parameter list (two

integers, 'a' and 'b'). The local variable 'result' is declared inside the function, the

function body contains the code that performs the addition, and the return statement

returns the value of 'result' as the output of the function.

It's worth noting that, the function block structure is a fundamental concept in C

language, it allows to structure of the code in a more readable and maintainable way.

Functions are used to divide the code into smaller, more manageable pieces, and the

function block structure makes it easy to organize and reuse those pieces.

Passing arguments to a Function argument.

In C language, arguments can be passed to a function in two ways: by value and by

reference.

Pass by value: In this method, the actual value of the argument is passed to the

function. The function receives a copy of the argument, so any changes made to the

argument within the function do not affect the original value of the argument. In C,

all basic data types such as int, float, and char are passed by value.

Example

void increment(int x) {

 x++;

}

129

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

int main() {

 int a = 5;

 increment(a);

 printf("%d", a); // prints 5

}

Pass by reference: In this method, the memory address of the argument is passed to

the function. The function receives a pointer to the argument, so any changes made

to the argument within the function affect the original value of the argument. In C,

this is achieved by passing a pointer to the variable.

Example

void increment(int *x) {

 (*x)++;

}

int main() {

 int a = 5;

 increment(&a);

 printf("%d", a); // prints 6

}

Passing by reference allows a function to modify the value of an argument, passing

by value does not, it's a way to obtain a side effect.

The choice between passing by value and passing by reference depends on the

desired behavior of the function. If the function is supposed to modify the value of

an argument, passing by reference is the best option, otherwise, passing by value is

the best option.

130

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

Q: What is a function in C?

A: In C, a function is a block of code that performs a specific task. A function can

take zero or more inputs (known as parameters) and can return zero or one output

(known as the return value). Functions allow you to reuse code, making your

program more organized and easier to read and maintain.

For example, the following code defines a function called "add" that takes two

integers as parameters and returns the sum of them:

int add(int a, int b) {

 return a + b;

}

Q: How can we call a function in C?

A: To call a function in C, you need to use its name followed by a pair of parentheses,

and pass any necessary parameters inside the parentheses.

For example, the following code calls the "add" function and assigns the return value

to a variable called "result":

int result = add(3, 4);

You can also call a function without assigning its return value to a variable, for

example:

add(3,4);

It's worth noting that a function can be called multiple times with different

parameters, and it will execute the code block inside the function every time it's

called.

Q: What is the difference between a function prototype and a function

definition?

A function prototype is a declaration of a function that provides the compiler with

information about the function's name, return type, and the number and types of

parameters. A function definition, on the other hand, includes the function prototype

and the actual code that gets executed when the function is called.

For example, the following code defines a function prototype for the "add" function:

131

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

int add(int a, int b);

And the following code defines the function definition:

Example

int add(int a, int b) {

 return a + b;

}

function prototypes should be placed in a header file and included in the source code

files that call the function, this will allow the compiler to check for any errors related

to the function call before the execution.

Q: What is a conditional statement in C?

A: In C, a conditional statement is used to control the flow of a program based on a

certain condition. The most common conditional statements are if-else and switch-

case statements.

For example, the following code uses an if-else statement to check if a variable called

"x" is greater than 10. If it is, the code inside the if block is executed. If it isn't, the

code inside the else block is executed:

Example

if (x > 10) {

 printf("x is greater than 10\n");

} else {

 printf("x is less than or equal to 10\n");

}

1. What is the difference between bubble sort and insertion sort?

2. How do you implement a linear search in C?

3. What is the time complexity of quick sort?

4. How do you sort an array of integers using selection sort in C?

5. What is the advantage of using binary search over linear search?

132

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

6. How do you implement a merge sort algorithm in C?

7. What is the difference between stable and unstable sorting algorithms?

8. How do you implement a heap sort algorithm in C?

9. What is the time complexity of insertion sort?

10. How do you sort an array of strings using bubble sort in C?

11. What is the difference between quicksort and heapsort?

12. How do you implement a radix sort algorithm in C?

13. What is the time complexity of selection sort?

14. How do you sort an array of structures using insertion sort in C?

15. What is the advantage of using quick sort over merge sort?

16. How do you implement a counting sort algorithm in C?

17. What is the time complexity of bubble sort?

18. How do you sort an array of doubles using quicksort in C?

19. What is the difference between internal and external sorting algorithms?

20. How do you implement a shell sort algorithm in C?

21. What is the purpose of a function in C?

22. How do you define a function in C?

23. What is the difference between a function declaration and a function

definition in C?

24. How do you call a function in C?

25. What is the use of the return statement in a function in C?

26. How do you pass arguments to a function in C?

27. What is the difference between call by value and call by reference in C?

28. How do you return multiple values from a function in C?

29. What is the purpose of the main function in C?

30. How do you use function pointers in C?

133

Computer Notes Dr. Namita Mittal, CSU, Jaipur Campus

31. What is the difference between a library function and a user-defined function

in C?

32. How do you use recursion in C functions?

33. What is the difference between a static function and a non-static function in

C?

34. How do you use variable-length arguments in a function in C?

35. What is the purpose of the void keyword in a function in C?

36. How do you use the inline keyword for a function in C?

37. What is the difference between a global function and a local function in C?

38. How do you use the const keyword in a function in C?

39. What is the purpose of the extern keyword in a function in C?

40. How do you use the register keyword for a function in C?

